Indigenous Regression Equations for Forced Oscillation Technique – A Much Needed Affair

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation Criteria for First-order Forced Nonlinear Difference Equations

where (i) {p(n)}, {e(n)} are sequences of real numbers; (ii) {qi(n)}, i= 1,2, are sequences of positive real numbers; (iii) λ, μ are ratios of positive odd integers with 0 < μ < 1 and λ > 1. By a solution of equation (1, i), i= 1,2,3, we mean a nontrivial sequence {x(n)}which is defined for n ≥ n0 ∈ N = {0,1,2, . . .} and satisfies equation (1, i), i = 1,2,3, and n = 1,2, . . . . A solution {x(...

متن کامل

Forced Oscillation for Higher Order Functional Differential Equations

We establish some oscillation criteria for the solutions to forced higher-order differential equations. We do not assume that the forcing term is the n-th derivative of an oscillatory function, and do not assume that the coefficients are of a definite sign. Our results are illustrated with examples.

متن کامل

Oscillation theorems for second order nonlinear forced differential equations

In this paper, a class of second order forced nonlinear differential equation is considered and several new oscillation theorems are obtained. Our results generalize and improve those known ones in the literature.

متن کامل

Oscillation Criteria for First Order Forced Dynamic Equations

x(t) + r(t)Φγ (x σ (t)) + p(t)Φα (x σ (t)) + q(t)Φβ (x σ (t)) = f(t), with Φη (u) := |u| u, η > 0. Here r(t), p (t) , q(t) and f (t) are rdcontinuous functions on T and the forcing term f(t) is not required to be the derivative of an oscillatory function. Our results in the special cases when T = R and T = N involve and improve some previous oscillation results for first-order differential and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Indian Journal of Pediatrics

سال: 2020

ISSN: 0019-5456,0973-7693

DOI: 10.1007/s12098-020-03194-2